
IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 1, March, 13
ISSN: 2320 - 8791
www.ijreat.org

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org)

1

An Efficient Processing Of Regular Register
Prone To Continuous Change

Deepak Singh P1, Anish Kumar R2,Dr.P.N.Jebarani Sargunar3

1,2&3

C.S.E Department, S.A.Engineering College,

Chennai-77, Tamilnadu, India

Abstract

In generally dealing with failures has been one of the main

challenges in the construction of real reliable applications able to

work in a distributed system. Implementations of Shared objects,

in modern distributed systems, have to take into account the fact

that almost all services, implemented on top of distributed

infrastructures, are no longer fully managed due to their size or

their maintenance cost. This system addresses the construction of

a multi writer/multi reader regular register in an eventually

synchronous distributed system affected by the continuous

arrival/departure of participants. In particular, a general protocol

implementing a regular register is proposed ,It has been formally

proved that a regular register can be implemented in an

eventually synchronous distributed system. Also we performed

in here the enhancement by using Consensus algorithm.

Consensus is the process of agreeing on one result among a

group of participants. In here reconfiguration service is

implemented by a distributed algorithm that uses distributed

consensus to agree on the successive configurations. In addition

we enhanced Elo rating system, which is a method for

calculating the relative skill levels of players in two-player

games such as chess or more player

process.

Keywords:churn, regular register, consensus algorithm,
Elo-rating.

1. Introduction

1.1 Perspective

A distributed system is a set of physically separate

processors connected by one or more communication

links. User should be presented with the “single-system

image” regardless any particular hardware platform,

operating system and network. Air traffic control,

telecommunication, banking systems, and e-booking

systems are just a few examples of such application

domains. The composition of the system is modified only

when a new process is added or either a process crashes.

Therefore, if a process does not crash, it lives for the entire

duration of the computation.

1.2Drive

Distributed system now requires some degree of self

management. In general, every player is eager to know the

competitor status in a competition. Knowing that some

may quit and some may proceed with more effort. Here in

this paper the same [5] churn notion is used as parameter

to make tractable systems having their composition

evolving along the time.

1.3 Involvement

No process is guaranteed to participate for-ever in the

distributed computation. To check this churn notion c as a

parameter is used [6]. [5].A regular register can have any

number of writers and any number of readers [12].with

this we make an enhancement by consensus algorithm and

Elo rating system,from which agreement and relative skill

of the participant is known.

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 1, March, 13
ISSN: 2320 - 8791
www.ijreat.org

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org)

2

2. Proposed system model

2.1 Distributed Computing

Distributed computing is the next step in computer

progress, where computers are not only networked, but

also smartly distribute their workload across each

computer so that they stay busy and don't squander the

electrical energy they feed on. If enough users sign up,

these linked computers — often referred to as virtual

parallel machines — can surpass the fastest supercomputer

by as much as four times for a fraction of the

supercomputer's cost. More power for less money. All the

computers on the Internet may be powerful when

combined, but there needs to be something to combine and

coordinate all of them to work towards one goal. Server

computers are still needed to distribute the pieces of data

andcollect the results from participating clients. Air

trafficcontrol, telecommunication, banking systems, and e-

government systems are just a few examples of such

application domains.

Two protocols join and leave computation are the one to

make a process in and out of the distributed system.

2.2 The challenges of distributed systems

1. Secure communication over public networks (ACI: who

sent it, did anyone see it, did anyone change it).
2.Fault-tolerance (Building reliable systems from

unreliable components nodes fail independently; a
distributed system can “partly fail”.
3. [11] A distributed system is one in which the failure
of a machine I’ve never heard of can prevent me from
doing my work. (Replication, caching, naming).
4. Placing data and computation for effective resource

sharing, hiding latency, and finding it again once you put

it somewhere (Coordination and shared state, “What

should the system components do and when should they

do it?”).

5. Once they’ve all done it, can they all agree on what

they did and when?.

2.3 Regular Register Process

The notion of a regular register defined in the introduction

has to be adapted to a dynamic system. We consider that a

protocol implements a regular register in a dynamic

system if the following properties are satisfied.
* Liveness: If a process invokes a read or a write

operationand does not leave the system, it eventually

returns from that operation.
* Safety: A read operation returns the last value

writtenbefore the read invocation, or a value written

by a write operation concurrent with it.
It is easy to see that these properties boil down to the

classical definition if the system is static. Moreover, it is

assumed that a process invokes the read or write operation

only after it has returned from its join() invocation.

2.4 Distributed Algorithm

Distributed algorithms are typically executed

concurrently, with separate parts of the algorithm being

run simultaneously on independent processors, and having

limited information about what the other parts of the

algorithm are doing. One of the major challenges in

developing and implementing distributed algorithms is

successfully coordinating the behavior of the independent

parts of the algorithm in the face of processor failures and

unreliable communications links. The choice of an

appropriate distributed algorithm to solve a given problem

depends on both the characteristics of the problem, and

Client

Server

Shared objects

Registration

Regular register process

Distributed Process

Multi reader / Multi writer

process

Leave Computation

Join Computation

Distributed Algorithm

Process

Consensus algorithm

process

Data updation

Shared object

Process

Regular register

process

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 1, March, 13
ISSN: 2320 - 8791
www.ijreat.org

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org)

3

characteristics of the system the algorithm will run on such

as the type and probability of processor or link failures, the

Kind of inter process communication that can be

performed, and the level of timing synchronization

between separate processes.

2.5 Multireader/Multiwriter

We presented an implementation of the regular register for

a synchronous distributed system. Such implementation is

based on the following considerations: 1) the join register

() operation is executed once from each process and 2)

read () and write () operations are executed frequently. In

here we also enhanced into the Consensus algorithm.

Consensus is the process of agreeing on one result among

a group of participants. In here reconfiguration service is

implemented by a distributed algorithm that uses

distributed consensus to agree on the successive

configurations. In addition we enhanced Elo rating system,

which is a method for calculating the relative skill levels

of players in two-player games such as chess or more

player process.

3. Consensus Algorithms

In distributed computing, a classic problem is achieving

consensus among multiple parties. In a design with

multiple parties, there may be times when a majority (or

potentially all) of the processes involved need to agree.

The protocols relating to achieving this agreement are

typically called consensus algorithms. One of the harder

problems with achieving consensus is dealing with and

recovering from failure of processing during the consensus

activity. Most algorithms are focused on achieving as

consistent and as reliable a consensus while anticipating

failure. The goals of most consensus algorithms usually

include:

Validity—The final answer that achieves consensus is a

valid answer.

Agreement—All processes agree as to what the agreed

upon answer was by the end of the process.

Termination—The consensus process eventually ends

with each process contributing.

Integrity—Processes do not vote more than once.

Many consensus algorithms contain a series of events (and

related messages) during a decision-making round.

Typical events include Proposal and Decision.

According to paxo’s algorithm[14]

1. Prepare—The Leader and Proposer sends a Prepare

message to the Quorum of Acceptors. This Prepare

message includes a proposal number, n.

2. Promise—The Acceptors respond with a Promise to

not accept Proposals with numbers less than the proposal

number in the Prepare message. They must first verify

that they have not already made a similar Promise with a

proposal number greater than n.

If they cannot Promise, they send a denial message. If

they can Promise, they may optionally send a proposed

value for the Proposal they believe is the correct one.

3. Accept—The Proposer sends a value for the Quorum to

agree upon. If no values were included in the Promise

messages, the Proposer is free to choose any value it

believes is correct. If values were returned with the

Promise messages, the Proposer must select one of those.

4. Accepted—This is the response message from the

Acceptors within the Quorum, indicating they have

accepted the value. This message is sent by the Acceptors

to the Proposer and by each Acceptor to each Learner

(think of the Leaner as asecondary storage mechanism
in this case.)

An illustrative diagram of consensus process

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 1, March, 13
ISSN: 2320 - 8791
www.ijreat.org

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org)

4

4.Conclusion

When change occurs continuously in a distributed

system, it creates consistency violations. To track the

churn notion as referred in [5] is implemented and also

global acceptance of the data is made using the consensus

algorithm [14]Consensus algorithms can be used directly

to implement an atomic data service by allowing

participants to agree on a global total ordering of all

operations. In contrast, we use consensus to agree only on

the sequence of configurations and not on the individual

operations. Also, in Consensus algorithm, processed into

the termination of consensus affects the terminations of

reconfiguration, but not of read and write operations. In

addition enhanced into the information about others

updating process of impact and also provide Elo rating

system, here the Elo rating system is a method for

calculating the relative skill levels of players in two-player

games such as chess or more player process.

References

[1] R. Baldoni and A.A. Shvartsman, “Theoretical Aspects of

Dynamic Distributed Systems: Report on the Workshop,”

SIGACTNews, vol. 40, no. 4, pp. 87-89, 2009.

[2] T. Chandra and S. Toueg, “Unreliable Failure Detectors for

Reliable Distributed Systems,” J. ACM, vol. 43, no. 2, pp. 225-

267, 1996.

[3] M.K. Aguilera, I. Keidar, D. Malkhi, and A. Shraer,

“DynamicAtomic Storage without Consensus,” Proc. 28th Ann.

ACM Symp.

Principles of Distributed Computing (PODC), pp. 17-25, 2009.

[4] Roberto Baldoni, Member, IEEE, Silvia Bonomi, and Michel

Raynal “Implementing a Regular Register in an Eventually

Synchronous Distributed System Prone to Continuous Churn”

[5] R. Baldoni, S. Bonomi, A.M. Kermarrec, and M. Raynal,

“Implementing a Register in a Dynamic Distributed System,”

Proc. 29th IEEE Int’l Conf. Distributed Computing Systems

(ICDCS ’09), June 2009.

[6] R. Baldoni, S. Bonomi, and M. Raynal, “Regular Register:

An

Implementation in a Churn Prone Environment,” Proc 16th

Int’l Colloquium on Structural Information and Comm.

Complexity(SIROCCO), pp. 15-29, 2009.

[7] B. Godfrey, S. Shenker, and I. Stoica, “Minimizing Churn in

Distributed Systems,” Proc. Conf. Applications, Technologies,

Architectures,and Protocols for Computer Comm. (SIGCOMM),

pp. 147-158, 2006.

[8] C. Dwork, N. Lynch, and L. Stockmeyer, “Consensus in the

Presence of Partial Synchrony,” J. ACM, vol. 35, no. 2, pp. 288-

323,

1988

[9] S. Ko, I. Hoque, and I. Gupta, “Using Tractable and Realistic

Churn Models to Analyze Quiescence Behavior of Distributed

Protocols,” Proc. 27th IEEE Int’l Symp. Reliable Distributed

Systems(SRDS ’08), 2008. 108 ieee transactions on parallel and

distributed systems, vol. 23, no. 1, january 2012[9,12,23]

[10] F. Kuhn, S. Schmid, J. Smit, and R. Wattenhofer, “A

Blueprint forConstructing Peer-to-Peer Systems Robust to

Dynamic Worst-Case Joins and Leaves,” Proc. 14th IEEE Int’l

Workshop Quality ofService (IWQoS), 2006.

[11] L. Lamport, “On Interprocess Communication, Part 1:

Models,

Part 2: Algorithms,” Distributed Computing, vol. 1, no. 2, pp.

77-101, 1986.

[12] C. Shao, E. Pierce, and J. Welch, “Multi-Writer

Consistency

Conditions for Shared Memory Objects,” Proc. 17th Int’l Symp.

[13] H. Attiya, A. Bar-Noy, and D. Dolev, “Sharing Memory

Robustlyin Message-Passing Systems,” J. ACM, vol. 42, no. 1,

pp. 129-142,1995.

[14]Consensus Algorithms with EC2.

